数据仓库简介、发展、架构演进、实时数仓建设、与离线数仓对比

数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务,数据仓库的建设也是“数据智能”中必不可少的一环。本文将从数据仓库的简介、经历了怎样的发展、如何建设、架构演变、应用案例以及实时数仓与离线数仓的对比六个方面全面分享关于数仓的详细内容。

Flink Connector 深度解析

作者介绍:董亭亭,快手大数据架构实时计算引擎团队负责人。目前负责 Flink 引擎在快手内的研发、应用以及周边子系统建设。2013 年毕业于大连理工大学,曾就职于奇虎 360、58 集团。主要研究领域包括:分布式计算、调度系统、分布式存储等系统。

美团点评基于 Flink 的实时数仓建设实践

引言

近些年,企业对数据服务实时化服务需求日益增多。本文整理了常见实时数据组件的性能特点和适用场景,介绍了美团如何通过 Flink 引擎构建实时数据仓库,从而提供高效、稳健的实时数据服务。此前我们美团技术博客发布过一篇文章《流计算框架 Flink 与 Storm 的性能对比》,对 Flink 和 Storm 两个引擎的计算性能进行了比较。本文主要阐述使用 Flink 在实际数据生产上的经验。

一文让你彻底了解大数据实时计算引擎 Flink

前言

在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算。随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop、Storm、Spark、Flink)。在网上有人将大数据计算引擎的发展分为四个阶段。

,